tensorflow安装

安装tensorflow需要有cuda和cudnn,cuda和cudnn有两种安装方法,一种是系统全局安装的,一种是在自己的conda环境里弄一份新的,这两个是可以共存的。

所以,先想好自己想用哪个cuda

方法一、使用系统全局的cuda和cudnn(一般是nvidia的驱动包带的)

注意tensorflow有严格的cuda对应关系,这里是最低的cuda版本要求。也就是安装tensorflow2.3.0最低要cuda10.1

https://tensorflow.google.cn/install/source#gpu

先查看本机安装的cuda版本,我这里是10.1

1
2
3
4
user@ubuntu:~$ ls -l /usr/local/cuda
lrwxrwxrwx 1 root root 21 Nov 11 2020 /usr/local/cuda -> /usr/local/cuda-10.1/
user@ubuntu:~$ cat /usr/local/cuda/version.txt
CUDA Version 10.1.105
BASH

nvidia-smi也可以看到一个CUDA version,但是这个是驱动最高支持的cuda版本,并不是本机安装的cuda版本

安装对应的tensorflow

1
pip install tensorflow==2.3.0
BASH

测试是否可用gpu

1
2
import tensorflow as tf
tf.test.is_gpu_available()
PYTHON

方法二、使用更高版本的cuda、cudnn和tensorflow(在conda环境里装个cuda运行时)

看看驱动支持的最高cuda版本:nvidia官网说明

使用nvidia-smi查看我的驱动是450.66,最高可以用cuda 11.0.3

cuda 11.0可以安装的tensorflow版本最高是tensorflow 2.4.0,需要cudnn 8.0

所以,先安装cudatoolkit 11.0

1
conda install cudatoolkit=11.0
BASH

安装cudnn 8.0

默认channel没有8.0的cudnn,但是conda-forge有

可以使用 conda search --full-name cudnn -c conda-forge 来搜索

1
conda install cudnn=8.0 -c conda-forge
APACHE

安装tensorflow 2.4.0

这里必须使用pip安装,conda安装的只有几百KB,不知道是什么,也不能用gpu

1
pip install tensorflow==2.4.0
APACHE

测试能否用gpu,同上一种方法。

1
2
import tensorflow as tf
tf.test.is_gpu_available()
PYTHON

大功告成。

keras 安装

keras和TensorFlow的兼容关系网上流传一张图

这个图只到了TensorFlow 2.2,但是我安装了TensorFlow 2.3,直接pip install keras会不兼容,经过测试,发现keras 2.4.1和TensorFlow 2.3.0兼容

斗胆怀疑keras最好和TensorFlow版本号一样或者差不多最好

测试:

1
from keras.layers.recurrent import SimpleRNN
PYTHON

看看报错不。


tensorflow安装
https://jcdu.top/2022/09/11/tensorflow安装/
作者
horizon86
发布于
2022年9月11日
许可协议